Study on effect of Cu integration and Oxygen vacancy/defect creation in electronic properties of TiO2 photocatalyst using first principles calculations

Volume 6, Issue 4, August 2021     |     PP. 36-52      |     PDF (874 K)    |     Pub. Date: November 30, 2021
DOI: 10.54647/materials43154    85 Downloads     162149 Views  

Author(s)

R. Gandhimathi, Nanophotonics Research Laboratory, Department of Physics, AMET University, Chennai, India
R. Vidhya, Department of Physics, V.V.Vanniaperumal College for Women, Virudhunagar, India
R. Karthikeyan, Department of Physics, Anna University Regional Campus, Tirunelveli, India

Abstract
In this investigation, it was proposed to analyze the optimized geometry, density of states (DOS) and electronic band structures of copper (4.16%, 4.16%+oxygen vacancy & 8.33%) doped Titanium Dioxide (Cu-TiO2) photocatalysts using density functional theory corrected for on-site Coulombic interactions (DFT+U). The photocatalytic reactivity of pristine TiO2 material is limited because of its wider bandgap and faster excitons recombination. Nevertheless, the transition metal ions doping like Cu ions reduce the energy requirement for electronic transition and thereby a maintain higher redox potential which might enhance the catalytic efficiency. DFT+U calculations revealed that inserting Cu atom modifies the band gap distribution and forms new unoccupied energy levels in the band gap near the top of valence band due to hybridization of Cu 3d states with Ti 3d states. The first principles calculations showed that the charge compensating oxygen vacancies form adjacent to the conduction band. Also, the oxygen vacancy creation brings modification in coordination geometry and makes the possibility of tuning the optical and catalytical properties of Cu doped TiO2-x material intensely.

Keywords
DFT, Cu-TiO2, Hubbard U correction, Oxygen vacancy

Cite this paper
R. Gandhimathi, R. Vidhya, R. Karthikeyan, Study on effect of Cu integration and Oxygen vacancy/defect creation in electronic properties of TiO2 photocatalyst using first principles calculations , SCIREA Journal of Materials. Volume 6, Issue 4, August 2021 | PP. 36-52. 10.54647/materials43154

References

[ 1 ] Fujishima A. Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008; 63(12):515–582.
[ 2 ] De Angelis F, Valentin CD, Fantacci S, Vittadini A, Selloni A. Theoretical Studies on Anatase and Less Common TiO2 Phases: Bulk, Surfaces, and Nanomaterials. Chem. Rev. 2014;114(19): 9708–9753.
[ 3 ] Zhan Qu, Yali Su, Li Sun, Feng Liang, and Guohe Zhang. Study of the Structure, Electronic and Optical Properties of BiOI/Rutile-TiO2 Heterojunction by the First-Principles Calculation. Materials. 2020;13(2):323-336
[ 4 ] Anpo M. Preparation, Characterization, and Reactivities of Highly Functional Titanium Oxide-Based Photocatalysts Able to Operate under UV–Visible Light Irradiation: Approaches in Realizing High Efficiency in the Use of Visible Light. B. Chem. Soc. Jpn., 2004; 77(8):1427-1435.
[ 5 ] Mohamed RM, Mckinney DL, Singmund WM. Enhanced nano catalysts. Mater. Sci. Eng. R-Rep., 2012; 73(1):1-13
[ 6 ] Kim TW, Ha HW, Paek MJ, Hyun SH, Choy JH, Hwang SJ. Unique phase transformation behavior and visible light photocatalytic activity of titanium oxide hybridized with copper oxide. J. Mater. Chem. 2010;20(16):3238–3245
[ 7 ] Assadi MHN, Hanaor DA. The effects of copper doping on photocatalytic activity at planes of anatase TiO2: A theoretical study. Appl. Surf. Sci. 2016;387(5): 682–689
[ 8 ] Wu F, Hu X, Fan J, Liu E, Sun T, Kang L, Hou W, Zhu C, Liu H. Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics. 2013;8(1):501–508.
[ 9 ] Xu S, Du AJ, Liu J, Ng J, Sun DD. Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water. Int. J. Hydrogen Energy. 2011;36(11):6560–6568.
[ 10 ] Wu Y, Lazic P, Hautier G, Persson K, Ceder G. First principles high throughput screening of oxynitrides for water-spliting photocatalysts. Energy & Environmental Science. 2013;6(1):157-168.
[ 11 ] Mingyang Wu, Dan Sun, Changlong Tan, Xiaohua Tian and Yuewu Huang. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study, Materials. 2017;10(4):359-373
[ 12 ] Mostaghni F, Abed Y. Structural determination of Co/TiO2 nanocomposite:XRD technique and simulation analysis. Materials Science-Poland. 2016; 34(3):534-539.
[ 13 ] Huamin Zhang, Xiaohui Yu, John A. McLeod, Xuhui Sun. First-principles study of Cu-doping and oxygen vacancy effects onTiO2for water splitting. Chemical Physics Letters. 2014; 612(): 106–110.
[ 14 ] Koch W, Holthausen MC. A Chemist’s Guide to Density Functional Theory. New York,USA: John Wiley & Sons; 2001. DOI: 10.1002/3527600043
[ 15 ] Roberto Peverati, Yan Zhao, Donald G Truhlar, Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. J. Phys. Chem. Lett. 2011;2(16):1991–1997.
[ 16 ] Sarah A, Tolba, Kareem M, Gameel, Basant A, Ali, Hossam A, Almossalami, Nageh K Allam. The DFT+U: Approaches, Accuracy, and Applications.2018; Doi.org/10.5772/intechopen.72020
[ 17 ] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. B, 1964;136(3B):864-0871.
[ 18 ] Kohn W and Sham L. softness, and the fukui function in the electronic theory of metals and Catalysis. J. Phys. Rev. 1965; 140(3): 1133-1138.
[ 19 ] John P Perdew, Mel Levy. Extrema of the density functional for the energy: Excited states from the ground-state theory. Phys. Rev. B. 1985; 31(10):6264
[ 20 ] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B. 1990; 41(11):7892-7895.
[ 21 ] Matsson AE, Schulz PA, Desjarlais MP. Designing meaningful density functional theory calculations in materials science—A primer. Modelling and Simulation in Materials Science and Engineering. 2005;13(1): 25 071003
[ 22 ] Snehamol Mathew, Priyanka Ganguly, Stephen Rhatigan, Vignesh Kumaravel, Ciara Byrne, Steven J. Hinder, John Bartlett, Michael Nolan, and Suresh C. Pillai, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018;8(11):2067-2072.
[ 23 ] Kun Wang, Ting Peng, Zhongming Wang, Hong Wang, Xun Chen, Wenxin Dai, Xianzhi Fu, Correlation between the H2 response and its oxidation over TiO2 and N doped TiO2 under UV irradiation induced by Fermi level. Applied Catalysis B: Environmental. 2019; 250(4):89–98
[ 24 ] Shun Kashiwaya, Jan Morasch, Verena Streibel, Thierry Toupance, Wolfram Jaegermann and Andreas Klein. The Work Function of TiO2. Surfaces. 2018;1(1):73–89
[ 25 ] Kulbir Kaur Ghuman, Chandra Veer Singh. A DFT C U study of (Rh, Nb)-codoped rutile TiO2. J. Phys. Condens. Matter. 2013;25(8):085501-085510.
[ 26 ] John R, Padmavathi S. Ab Initio Calculations on Structural, Electronic and Optical Properties of ZnO in Wurtzite Phase. Crystal Structure Theory and Applications. 2016;5(2): 24-41.
[ 27 ] Yaqin Wang, Ruirui Zhang, Jianbao Li, Liangliang Li and Shiwei Lin, First-principles study on transition metal-doped anatase TiO2. Nanoscale Research Letters. 2014;9(8):46-52.
[ 28 ] Dorian AH, Hanaor, Mohammed HN. Assadi, Sean Li, Aibing Yu, Charles C. Sorrell. Ab Initio Study of Phase Stability in Doped TiO2. Computational Mechanics. 2012; 50 (2):185-194.
[ 29 ] Wang Y, Perdew JP. Spin scaling of the electron-gas correlation energy in the high-density limit. Phys. Rev. B. 1991; 43(11): 8911-8916.
[ 30 ] Baroni S, Dal Corso A, de Gironcoli S, Giannozzi P, Cavazzoni C, Ballabio G, Scandolo S, Chiarotti G, Focher P, Pasquarello A, Laasonen K, Trave A, Car R, Marzari N, Kokalj A. Journal of Physics: Condensed Matter. 2009;21()39. http://www.pwscf.org
[ 31 ] Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys.Rev. Lett. 2008;100(13):136406.
[ 32 ] Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865−3868.
[ 33 ] Arroyo-de Dompablo ME, Morales-García A, Taravillo M. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs. Journal of chemical physics 2011;135(5):054503
[ 34 ] Ma X., Lu B, Li D, Shi R, Pan C, Zhu Y. Origin of photocatalytic activation of silver orthophosphate from first-principles. J. Phys. Chem. C 2011;115(11):4680–4687.
[ 35 ] Navas J, Sánchez-Coronilla A, Aguilar T, Hernández NC, Desireé M, Sánchez-Márquez J, Zorrilla D, Fernández-Lorenzo C, Alcántara R, Martín-Calleja J. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2 . Phys. Chem. Chem. Phys. 2014;16(8): 3835–3845.
[ 36 ] Nurul Fajariah, Wahyu Aji Eko Prabowo, Fadjar Fathurrahman, Asih Melati, Hermawan Kresno Dipojono. The investigation of electronic structure of transition metal doped TiO2 for diluted magnetic semiconductor applications: A first principles study. Procedia Engineering. 2017; 170 (1):141 – 147
[ 37 ] Ivan Mora-Sero, Juan Bisquert. Fermi Level of Surface States in TiO2 Nanoparticles, Nano Lett., 2003;3(7): 945–949.
[ 38 ] Charlene Chen, Kai-Chen Cheng, Evgeniy Chagarov, and Jerzy Kanicki. Crystalline In–Ga–Zn–O Density of States and Energy Band Structure Calculation Using Density Function Theory. Japanese Journal of Applied Physics. 2011;50 (9): 091102.
[ 39 ] Li L, Meng F, Hu X, Qiao L, Sun CQ, Tian H, et al. TiO2Band Restructuring by B and P Dopants. PLoS ONE. (2016);11(4): e0152726
[ 40 ] Hongfei Li, Yuzheng Guo, John Robertson. Calculation of TiO2 Surface and Subsurface Oxygen Vacancy by the Screened Exchange Functional. The Journal of Physical Chemistry C. 2015; 119 (32):18160-18166
[ 41 ] Jia J, Qian C, Dong Y, Li YF, Wang H, Ghoussoub M, Butler KT, Walsh A, Ozin GA. Heterogeneous catalytic hydrogenation of CO2 by metal oxides: defect engineering perfecting imperfection. Chem. Soc. Rev. 2017;46(1): 4631−4644.
[ 42 ] Widmann D, Behm RJ, Activation of molecular oxygen and the nature of the active oxygen species for co oxidation on oxide supported au catalysts. Acc. Chem. Res. 2014;47(3):740−749
[ 43 ] Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017;7(10):6493−6513.
[ 44 ] Yoyo Hinuma, Takashi Toyao, Takashi Kamachi, Zen Maeno, Satoru Takakusagi, Shinya Furukawa, Ichigaku Takigawa, and Ken-ichi Shimizu. Density Functional Theory Calculations of Oxygen Vacancy Formation and Subsequent Molecular Adsorption on Oxide Surfaces. J. Phys. Chem. C 2018;122(51): 29435−29444
[ 45 ] Hsin-Yi Lee, Stewart J Clark, John Robertson. Calculation of point defects in rutile TiO2 by the Screened Exchange Hybrid Functional. Phys. Rev. B. 2012;86(7): 075209