The Use of Multivariate Discriminant Analysis – The multi-sectorial approach applied to the Portuguese economy
DOI: 332 Downloads 7596 Views
Author(s)
Abstract
Over the years, economy’s cyclicality and the Disaster Myopia problem, which, according to Vasconcelos (2017), Cornand and Gimet (2012, p. 301) consists of an excessive optimism about market conditions whereby economic agents tend to underestimate risk, have repeatedly brought to the forefront the harmful effects of “bankruptcy” in varied economy sectors. With this, came a recurrent demand for better ways of anticipating “bankruptcy” or, at least, to look for contingency plans that could allow it not to spread out.In the same way that no two persons are alike, bankruptcies also differ significantly from one another, by either causes or consequences, tending to create difficulties to prediction. This article reviews the main models of multivariate discriminant analysis when applied in the multi-sectorial scope for the prediction of corporate “bankruptcy”. The focus is on the different components of bankruptcy.We gathered 78 multi-sectoral discriminatory functions, developed or reviewed by researchers between 1968 and 2016, for various time-horizons and countries. We intend to identify, in addition to the common procedures and characteristics of these analyzes and their base samples (Peres, 2014; Peres and Antão, 2017), also their components and their stability, when applied to different sectors.
Keywords
Multivariate Discriminate Analysis, Corporate Bankruptcy, Prediction models, Forecast, Multi-sector.
Cite this paper
Peres M., C. J., Antão, M. A.,
The Use of Multivariate Discriminant Analysis – The multi-sectorial approach applied to the Portuguese economy
, SCIREA Journal of Economics.
Volume 4, Issue 1, February 2019 | PP. 1-23.
References
[ 1 ] | Agarwal, V. and Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy. Prediction models, Journal of Banking and Finance, 32(8), pp. 1541-1551. |
[ 2 ] | Altman, E. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance. 23(4), pp. 589-609. |
[ 3 ] | Altman, E. and Hotchkiss, E. (1983). Corporate Financial Distress: A Complete Guide to Predicting, Avoiding, and Dealing with Bankruptcy. Wiley Interscience, John Wiley and Sons. SBN: 978-0-471-69189-1. |
[ 4 ] | Altman, E., Iwanicz-Drozdowska, Malgorzata, Laitinen, E. and Suvas, Arto (2014). Distressed Firm and Bankruptcy Prediction in an International Context: A Review and Empirical Analysis of Altman's Z-Score Model. Available at SSRN: https://ssrn.com/ abstract=2536340. |
[ 5 ] | Banco de Portugal (2015). Análise das Sociedades Não Financeiras em Portugal 2010-2015. Estudos da Central de Balanços. 23. |
[ 6 ] | Banco de Portugal (2016). Análise das Sociedades Não Financeiras em Portugal 2011-2016. Estudos da Central de Balanços. 26. |
[ 7 ] | Beaver, W. (1966). Financial Ratios as Predictors of Failure, Empirical research in accounting: selected studies. Journal of Accounting Research. 4, pp. 71-111. |
[ 8 ] | Bellovary, J., Giacomino, D. and Akers, M. (2007). A Review of Bankruptcy Prediction Studies: 1930 to Present, Journal of Financial Education, 33, pp. 124-146. |
[ 9 ] | Brealey, R. and Myers, S. (2010). Principles of Corporate Finance. McGraw-Hill ISBN 9780073530741. |
[ 10 ] | Brealey, R., Myers, S. and Marcus, A. (2001). Fundamentals of Corporate Finance. McGraw-Hill ISBN 0075531097. |
[ 11 ] | Breia, A., Mata, N. and Pereira, V. (2014). Análise Económica e Financeira: Aspectos Teóricos e Casos Práticos, Rei dos Livros, Lisbon. |
[ 12 ] | Carvalho, P. (2013). Continuidade: Estudo de um Caso. Revisores e Auditores, Revista da Ordem dos Revisores Oficiais de Contas, 63. |
[ 13 ] | Divsalar, M., Javid, M., Gandomi, A., Soofi, J. and Mahmood, M. (2011). Hybrid Genetic Programming-Based Search Algorithms for Enterprise Bankruptcy Prediction, Applied Artificial Intelligence: An International Journal, 25(8), pp. 669-692. |
[ 14 ] | EU – European Union (2013). Directive 2013/34/UE of the European Parliament and of the Council on the annual financial statements, consolidated financial statements and related reports of certain types of undertakings. |
[ 15 ] | Eurostat (2008). NACE Rev. 2 Statistical classification of economic activites in the European Community ISSN 19770375. |
[ 16 ] | Gaspar, Cecília (2014). Risco de Crédito: A importância da Gestão de Carteiras de Crédito. Inforbanca, 100, pp. 41-43. |
[ 17 ] | INE - Instituto Nacional de Estatística (2007). Classificação Portuguesa das Actividades Económicas - CAE Rev. 3. |
[ 18 ] | Peres, C. (2014). A Eficácia dos Modelos de Previsão de Falência Empresarial: Aplicação ao Caso das Sociedades Portuguesas, Master Thesis, Instituto Politécnico de Lisboa, Instituto Superior de Contabilidade e Administração de Lisboa, Lisboa. |
[ 19 ] | Peres, C. and Antão, M. (2017). The use of multivariate discriminant analysis to predict corporate bankruptcy: A review, AESTIMATIO, The IEB International Journal of Finance, 14, pp. 108-131. |
[ 20 ] | Silva, E. (2010). Basileia III: Recentes Desenvolvimentos na Regulamentação Prudencial da Actividade Bancária. Inforbanca. 86, pp. 7-10. |
[ 21 ] | Silva, I. (2006). O Acordo de Basileia II e o impacto na gestão de riscos da banca e no financiamento das empresas. Universidade do Minho, Master Thesis. |
[ 22 ] | Tinoco, H., Wilson, N. (2013). Financial Distress and Banckruptcy Prediction Among Listed Undertakings Using Accounting, Market and Macro Economic Variables. International Review of Financial Analiysis. 30, pp. 394-419. |
[ 23 ] | Vasconcelos, J. (2017). Credit Scoring: O Risco de Crédito e o seu Impacto nos Custos de Financiamento – O Caso Português, Master Thesis, Instituto Politécnico de Lisboa, Instituto Superior de Contabilidade e Administração de Lisboa, Lisboa. |
[ 24 ] | Xu, M. and Zhang, C. (2009). Bankruptcy Prediction: The Case of Japanese Listed Undertakings. Review of Accounting Studies, 14(4), pp. 534-558. |