Points algébriques de degrés au plus $5$ sur la courbe C d'équation affine y^{2}= 4x^{5}+1
DOI: 10.54647/mathematics11300 85 Downloads 12150 Views
                            Author(s)
                        
                            Abstract
                            In this work, we determine the set of algebraic points of degree at most Q over on the curve C given by the affine equation y^{2}= 4x^{5}+1.  This result extends a result of Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight and Dan Yasak who described in [1] the set of rational points on this curve
                        
                            Keywords
                            Planes curves - Degree of algebraic points - Rationals points - Algebraic extensions - Jacobian-Linear system
                        
                            Cite this paper
                            EL Hadji SOW, Moussa FALL, Oumar SALL, 
                            Points algébriques de degrés au plus $5$ sur la courbe C d'équation affine y^{2}= 4x^{5}+1
                            , SCIREA Journal of Mathematics.
                            Volume 6, Issue 6, December 2021 | PP. 73-86.
                            10.54647/mathematics11300
                        
                            References
                        
| [ 1 ] | Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight and Dan Yasak, (2016). A database of genus-2 curves over the rational numbers. LMS Journal of Computation and Mathematics, 19(A), 235-254. | 
| [ 2 ] | P. A. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs volume 76. American Mathematical Society, Providence (1989). | 
| [ 3 ] | The LMFDB Collaboration, The L-functions and Modular Forms Database. Available at: http://www.lmfdb.org. [Online; accessed 8 November 2021] | 
| [ 4 ] | O. Sall, Points algébriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris Ser. I 336 (2003) 117-120. | 
| [ 5 ] | O. Sall, M. Fall, C. M. Coly, Points algébriques de degré donné sur la courbe d'équation affine , International Journal Of Development Research Vol. 06, Issue, 11, pp. 10295-10300, November, 2016. |