Partial Algebraic Systems of type (T_n ,(n))
DOI: 10.54647/mathematics110401 103 Downloads 158337 Views
                            Author(s)
                        
                            Abstract
                            In this paper, we define the set   (CF_(T_n,(n))(X_n))^{A^s} of all  n-ary C-formulas on the  partial algebraic system A^s=(A;(f^A_i)_i in I,r^A)  of type (T_n,(n))    and define the operation  R^{n,A} on the set( (W^C_{T_n}(X_n))^{A^s}U(CF_(T_n,(n))(X_n))^{A^s}. After this definition we have a unitary Menger algebra ( ( (W^C_{T_n}(X_n))^{A^s}U(CF_(T_n,(n))(X_n))^{A^s};R^{n,A},x^{A^s}_1,...,x^{A^s}_n)  of rank n . Finally, we show that the set of all C-hypersubstitutions for an algebraic system of the type (T_n,(n))   with a binary operation on this set and the identity element forms a monoid.
                        
                            Keywords
                            term, unitary Menger algebra of rank n, hypersubstitution.
                        
                            Cite this paper
                            Saofee Busaman, 
                            Partial Algebraic Systems of type (T_n ,(n))
                            , SCIREA Journal of Mathematics.
                            Volume 8, Issue 2, April 2023 | PP. 62-86.
                            10.54647/mathematics110401
                        
                            References
                        
| [ 1 ] | F. Börner, Varieties of Partial Algebras, Beiträge zur Algebra und Geometrie, 37(2),(1996), 259-287. | 
| [ 2 ] | P. Burmeister, A model Theoretic Oriented Approach to Partial Algebras. Introduction to Theory and Application of Partial Algebras-Part I, Akademie-Verlag Berlin, (1986), 1-319. | 
| [ 3 ] | P. Burmeister, Lecture Notes on Universal Algebra-Many-Sorted Partial Algebras, (2002), 1-204. | 
| [ 4 ] | S. Busaman, Hyperequational Theory for partial algebras, Ph.D.Thesis, Universitat Potsdam, (2006), 1-131. | 
| [ 5 ] | S. Busaman, Unitary Menger algebra of C-quantifier free formulas of type , Asian-European Journal of Mathematics, Vol.14, No.4, DOI:10.1142/S1793557121500509, (2021), 1-20. | 
| [ 6 ] | W. Craig, Near equational and equational systems of logic for partial functions I, The Journal of Symbolic Logic, 54(1989), 795-827,. | 
| [ 7 ] | K. Denecke and J. Koppitz, M-solid Varieties of Algebras, Springer-Verlag, (2006), 1-341. | 
| [ 8 ] | K. Denecke, D. Lau, R. Pöschel and D. Schweigert, Hyperidentities, hyperequational classes and clone congruences, Contributions to General Algebra, Vol. 7, Verlag Hölder-Pichler-Tempsky, Wien, (1991), 97-118. | 
| [ 9 ] | A.I. Mal'cev, Algebraic Systems, Akademie-Verlag, Berlin, (1973), 1-317. | 
| [ 10 ] | D. Phusanga, Derived Algebric Systems, Ph.D.Thesis, Universität Potsdam, (2013), 1-81. | 
| [ 11 ] | D. Welke, Hyperidentitäten partieller Algebren, Ph.D.Thesis, Universität Potsdam, (1996), 1-104. |