Points algébriques sur une courbe hyperelliptique de Nils Bruin
DOI: 10.54647/mathematics110421 101 Downloads 170469 Views
                            Author(s)
                        
                            Abstract
                            We give the set of algebraic points of degree ≤5 over Q on the hyperelliptic  curveC: y²=6x(x^4+3). This result extends a previous result of Bruin  of who described in [1] the set of Q-rational points on this curve.
                        
                            Keywords
                            Degree of algebraic points - Rational points - Algebraic extensions - Jacobian.
                        
                            Cite this paper
                            El Hadji SOW, Moussa FALL, Oumar SALL, 
                            Points algébriques sur une courbe hyperelliptique de Nils Bruin
                            , SCIREA Journal of Mathematics.
                            Volume 8, Issue 4, August 2023 | PP. 130-138.
                            10.54647/mathematics110421
                        
                            References
                        
| [ 1 ] | N. Bruin, On powers as sums of two cubes, International Algorithmic Number Theory Symposium. Springer, Berlin, Heidelberg, 2000. | 
| [ 2 ] | P. A. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs volume 76. American Mathematical Society, Providence, 1989. | 
| [ 3 ] | M. Hindry and J. H. Silverman, Diophantie geometry, an introduction, springer verlage,2000. | 
| [ 4 ] | J. TH. Mulholland, Elliptic curves with rational 2-torsion and related ternary Diophantine equations. ProQuest LLC. Ann Arbor, MI, 2006. | 
| [ 5 ] | E. H. Sow, M. Fall, O. Sall, Points algébriques de degrésau-plus 5 sur la courbe d'équation affine , SCIREA Journal of Mathematics, Volume 6, Issue 6, 2021. |